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Abstract. Resonant ultrasound spectroscopy (RUS) involves the study of the mechanical
resonances of solids. The resonant response of a particular object depends on its shape, elastic
constants, crystallographic orientation, density, and dissipation. It is possible to obtain the
complete elastic constant matrix of relatively low-symmetry materials from a RUS spectrum on
a single small sample (<1 mm3). The measurement and the computation of the RUS spectra of
solids are reviewed. Several examples of the use of the technique are discussed.
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1. Introduction

Ultrasonic measurements have been valuable for the study of condensed matter physics and
materials science. Such measurements provide the most accurate characterization of the
elasticity of solids, and are a sensitive probe of any entity in the material which couples
to long-wavelength phonons. The usual measurement techniques, although quite powerful,
suffer from certain limitations which have prevented a more widespread use. Among the
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most important restrictions are the following: relatively large samples are required for
accurate measurements; a number of independent measurements, often on separate samples,
are needed to fully characterize the elastic properties of a material. This number may be
rather high for low-symmetry materials. Recently a new technique, resonant ultrasound
spectroscopy (RUS), has been demonstrated [1–4]. This new technique drastically reduces
the amount of material required for accurate results. In addition, the elastic properties
may be fully characterized by one spectrum on one sample, which results in a significant
saving in sample preparation time. Finally, the intrinsic accuracy of the new method is
high. These advantages are partially offset by a reliance on computer programs to extract
the basic physical quantities from the data. While the computing requirements would be a
serious concern with the computers of a decade ago, the power of desk top computers today
is adequate for data reduction, and one may expect the situation to become even better in
the future. Recent theoretical advances mean that in principle the technique can be applied
to any well defined sample shape, and to materials with any crystallographic symmetry.

Ultrasonic measurements may be regarded as a type of elastic wave spectroscopy. The
spectra are rather rich, due in part to the anisotropic nature of elasticity in crystals. The
kinds of information obtained are readily understood by considering a common situation.
The velocity and attenuation of ultrasonic waves are often measured. The elastic constants
of the material may be derived from the velocity measurements. The elastic constants are
of fundamental importance; they are the second derivatives of the free energy with respect
to strain and are directly related to the atomic bonding of the material. In addition, they
are connected to thermal properties of solids through the Debye theory. In combination
with specific heat and thermal expansion measurements, elastic constant data can be used
to determine the equation of state and various thermodynamic functions. While the elastic
constants represent primarily equilibrium thermodynamics, the attenuation is a manifestation
of irreversible processes. The attenuation may be due to energy absorption by various
physical entities in the material such as conduction electrons, thermal phonons, defects,
order parameter relaxation, etc. Perhaps less interesting, attenuation may arise due to
scattering or beam spreading.

As will be described below, RUS offers significant advantages over earlier methods of
ultrasonic spectroscopy. In what follows we will provide a short review of elastic waves in
condensed matter and discuss briefly previous ultrasonic techniques. The new technique of
RUS will be described including a review of the theoretical basis of the method. Examples
of results obtained by RUS will be given to illustrate the power of the technique. We will
not attempt to be exhaustive in our coverage of this subject, but will rely on references to
the literature to complete the picture.

2. Ultrasonic waves in condensed matter

2.1. Crystalline elasticity

Materials are generally deformed when forces are applied. If we denote byui(xk), i, k =
1, 2, 3, the displacement of a point whose coordinates werexk before the deformation, the
deformation may be described by a strain tensor

ekl = 1

2

[
∂uk

∂xl
+ ∂ul

∂xk

]
(1)

where it is assumed that the strains are small so that second-order terms may be neglected.
The diagonal elements of the strain tensor,ekk, are a measure of the extension per unit
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length of thekth axis, while the off-diagonal elements,ekl , are a measure of the change in
the angle between thek and l axes. The forces related to the deformation are described in
terms of the stress tensorσij where the subscripti denotes theith component of a force
acting on a unit area with normal along thej th axis. For linear elasticity a generalized
Hooke’s Law holds so that

σij = Cijklekl (2)

where theCijkl are the elastic constants. It can be shown that the elastic constants are the
second derivatives of the free energy with respect to strain [5, 6]. We use the convention
that repeated indices are to be summed over. Hence, it appears that there are 81 independent
elastic constants. However, a considerable simplification is possible. With the assumption
that no net body torques act on the material it can be shown [5, 6] thatσij = σji , thus i
and j may be interchanged. It is obvious thatk and l can be interchanged in (1). As a
result, the number of independent elastic constants is reduced to 36. Finally, the condition
that the strain energy be a function only of the state of the material leads toCijkl = Cklij ,
which reduces the number of independent elastic constants to 21. Any further reductions
depend on the symmetry of the crystal under consideration. Only the lowest-symmetry
crystal, triclinic with a onefold axis of rotation, has 21 elastic constants. Mirror planes,
n-fold rotation axes, etc can reduce the number considerably. For example, a single crystal
with cubic symmetry has only three independent elastic constants and an isotropic material
has only two.

The equations of motion are obtained by considering the forces acting on an infinitesimal
cube of material of volume dx dy dz. Neglecting body forces, the net force is due to the
different stresses acting on different faces of the cube, i.e. it is due to the spatial variation
of the stress. Newton’s second law for the cube becomes

∂σij /∂xj = ρ∂2ui/∂t
2 (3)

where ρ is the mass density. Combining (1)–(3) and usingCijkl = Cijlk gives for the
equation of motion

Cijkl∂
2uk/(∂xj ∂xl) = ρ∂2ui/∂

2t. (4)

The solutions of (4) are in general quite difficult. In large measure, this difficulty has dictated
experimental techniques. An approach widely used is to assume plane wave solutions for (4)
and then to design experiments so that, to a reasonable approximation, the waves propagated
are planar. This is the usual situation for the pulse-echo and continuous-wave methods to
be described in the next section.

2.2. Plane-wave propagation methods

The pulse-echo technique is a widely used method to obtain ultrasonic velocity and
attenuation data for solids [7]. The experimental arrangement is shown in figure 1.
The sample to be studied is prepared with two flat and parallel faces, usually oriented
perpendicularly to a major crystallographic axis. Piezoelectric transducers are bonded to one,
or both, faces. An electromagnetic pulse generates a short train of ultrasonic vibrations at
the transmitting transducer which then travel back and forth across the sample. The ‘echoes’
excite the receiving transducer (which can be the same as the transmitting transducer) as
the pulse reverberates in the sample. With corrections for transducer effects, the ultrasonic
velocity is determined from the time of flight and the sample thickness. The attenuation is
determined from the decay of the echo amplitude with time.
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Figure 1. A sample–transducer arrangement for conventional ultrasonic measurements.

Although less well known than the pulse-echo technique, continuous-wave methods
have been used successfully to make sensitive attenuation and velocity measurements [8].
The sample–transducer arrangement is the same as that of figure 1. The transmitting
transducer is driven continuously and a resonant response is observed at frequencies
corresponding to the sample length being some multiple of a half-wavelength of sound.
With transducer corrections, the ultrasonic wave velocity is determined from the measured
resonant frequencies. The attenuation is determined from theQ of the resonance lines.

Both the pulse-echo and continuous-wave methods above almost always rely on the
assumption of plane waves to interpret the results. Plane-wave solutions of (4) have been
given for the various crystal symmetries [9, 10] and the relations between the ultrasonic
velocity and elastic constants obtained. These relations are fairly simple for cubic materials,
but become increasingly complicated for lower-symmetry crystals. For cubic materials it is
possible to obtain the three independent elastic constants by propagating one longitudinal
and two independent transverse waves along the [110] crystalline axis. Thus, three
measurements along this axis give the three elastic constants. For orthorhombic symmetry,
nine measurements along six different directions are needed to determine the complete elastic
constant tensor, a laborious task. Nevertheless, both the pulse-echo and the continuous-
wave approach offer quick, easily interpretable methods for elastic constant measurements
on high-symmetry materials. Both methods can be extended to rather high frequencies.
However, the methods have several deficiencies which are well known to practitioners.

(i) Relatively large samples are required due to the need to approximate plane-wave
propagation. First of all, the diameter of the transducer must be much greater than
the wavelength of ultrasound in the sample. For frequencies in the 10 MHz range this
requirement leads to typical transducer diameters of 1 cm. Diffraction will still lead to
beam spreading, so, to avoid reflections from the sides of the sample, the sample diameter
must be somewhat larger than the transducer diameter.

(ii) Near the transducer the wave is approximately planar, but diffraction effects exist
and limit the accuracy of velocity and attenuation measurements [11].

(iii) There are several deleterious effects associated with bonding a transducer to the face
of the sample. Coupling losses in the bonding agent often affect the results. The bonding
agent may introduce non-parallelism of the end faces. These effects are all compounded by



Resonant ultrasound spectroscopy 6005

the fact that the usual transducer is phase sensitive; the voltage out is proportional to the
sum of theamplitudes, not the intensities, of the various waves impinging across the face
of the transducer. It is possible to obtain cancellation effects due to uninteresting factors
which reduce the detected signal.

(iv) As discussed above, the number of independent measurements that must be made
to determine the complete set of elastic constants is at least equal to the number of
elastic constants to be determined. For symmetries lower than cubic, measurements along
more than one crystallographic axis must be made. In addition to being time consuming,
these independent measurements compromise the relative accuracy with which the elastic
constants are known. Many materials of current interest have symmetries much lower than
cubic; thus, it is often impractical to obtain the full set of elastic constants by the usual
techniques.

Figure 2. A sample–transducer arrangement for RUS.

3. Resonant ultrasound spectroscopy

RUS offers an approach which differs fundamentally from the more conventional methods
just described. RUS does not rely on the plane-wave approximation; indeed there are no
plane waves. Instead, RUS is based on the measurement of the vibrational eigenmodes of
samples of well defined shapes, usually parallelepipeds or spheres. A typical experimental
arrangement is illustrated in figure 2. A sample, often a parallelepiped, is held lightly
between two piezoelectric transducers. The sample is excited at one point by one of the
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Figure 3. An RUS spectrum for a textured, polycrystalline copper parallelepiped of dimensions
2.016× 2.172× 1.810 mm3. The inset shows the resonance at 788.5 kHz after the sample was
remounted in the holder. The arrows indicate the computed frequencies based on a fit to the
first 50 resonances with an rms error of 0.2%.

transducers. The frequency of this driving transducer is swept through a range corresponding
to a large number of vibrational eigenmodes of the sample. The resonant response of the
sample is detected by the opposite transducer. A large response is observed when the
frequency of the driving transducer corresponds to one of the sample eigenfrequencies.
A segment of a typical spectrum is shown in figure 3. As will be discussed below,
the eigenfrequencies depend on the elastic constants, the sample shape, the orientation
of the crystallographic axis with respect to the sample, and the density. By measuring a
large number of resonant frequencies on one sample it is possible to obtain information
about all these quantities. (The square of the frequencies depends on the product of
the elastic constants and the linear dimensions of the sample; thus, elastic constants
and linear dimensions cannot be determined independently.) Usually the sample shape,
crystallographic orientation, and density are known and one determines the complete elastic
constant matrix from such a spectrum. There is no need to prepare a different sample with
different crystalline orientations.

Accurate measurements of the sample eigenfrequencies require attention to a number
of critical parameters. These parameters have been discussed in detail by Miglioriet al
[4]; thus, the present discussion will only outline the key factors. Ideally the sample
shape would be known perfectly, there would be no external forces acting on the sample,
and the methods used to excite and detect the resonances would not affect the measured
frequencies. In practice the ideal conditions can be approached closely enough that elastic
constant measurements are of exceptionally high absolute accuracy [4, 12].
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The computation of the eigenfrequencies to be discussed below is for a sample of well
defined shape, usually a rectangular parallelepiped or a sphere, although cylinders have also
been used [13]. Detailed methods for preparing accurate parallelepipeds have been given
by Migliori et al [4]. Methods are also available for preparing spheres [14]. A complete
analysis of the error introduced by a deviation from the assumed shape is difficult and a
simple formula for estimating such error is not available [15]. However, absolute accuracies
for the elastic constants range from about 3% for off-diagonal moduli to about 0.02% for
some of the pure shear moduli.

Transducers used to excite and detect the sample eigenfrequencies often have resonant
responses. In such cases, the detected resonance is a combination of the sample response
and the transducer response with the result that the observed frequency may be either
higher or lower than the true sample eigenfrequency. Figure 2 includes a schematic
diagram of the Migliori transducer design [4, 16] which overcomes this problem. The bare
lithium niobate piezoelectric transducer has a fundamental compressional mode frequency of
30 MHz; however, the bending mode frequency is much lower. By bonding the transducer
to a cylinder of diamond, which has an exceptionally high sound velocity, all resonant
frequencies of the transducer–diamond assembly are higher than 4 MHz. Most materials
with dimensions∼ 1 mm have many resonances below 4 MHz, thus this design permits the
measurement of the sample eigenfrequencies with essentially no shift due to the transducer
frequency response. Transducer designs based on polyvinylidene fluoride films [3] and
ferromagnetic films [17] have also been given.

With non-resonant transducers, the signal voltage is rather low. This problem can be
compounded by capacitative loading by the coaxial line used to carry the signal from the
experimental environment to the receiver. This effect depends on the length of coaxial line
and the characteristics of the receiver. Low-noise amplifiers and proper attention to input
impedance are needed for good results. Finally, the theoretical solutions discussed below
are for free boundaries. The transducers apply some force to the sample, so the boundaries
are not entirely free. It has been found [4] that if the force applied by the transducer is
0.01 N or less, and the drive voltage is kept low, the shift in eigenfrequencies resulting from
this force is of the order of parts per million. Instrumentation is now available commercially
[18, 19] which solves many of the experimental problems.

It is apparent that RUS overcomes many of the deficiencies of the more conventional
methods for the measurement of elastic constants.

(i) Small samples are naturally accommodated. Sample dimensions of approximately
1 mm typically result in many eigenfrequencies below 4 MHz, a convenient range.
Compared to more conventional methods described above, the minimum sample volume
is reduced by roughly three orders of magnitude. Many novel materials, especially in
single-crystal form, are only available as small samples, thus this reduction in minimum
size vastly expands the range of materials susceptible to precise ultrasonic measurements.

(ii) There are no diffraction effects to worry about; there is no plane-wave approximation.
The inherent accuracy is high.

(iii) There is no bond between the transducer and the sample, only contact force is used.
With sensitive electronics, a very low contact force is possible so that transducer loading
effects are negligible. The absence of a bond is very useful for temperature dependent
measurements because differential thermal contraction often leads to bonds breaking, or at
best strains being applied to the sample under investigation. This absence of a bond is
especially important near phase transitions.

(iv) All of the elastic constants are determined from one spectrum. There is no need
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to prepare a sample for measurements along a different crystalline direction. As a result,
high relative accuracy for the elastic constants is obtained. Low-symmetry materials are
accommodated almost as easily as high-symmetry materials.

Figure 4. An illustration of several vibrational eigenmodes for a rectangular parallelepiped.

Given the advantages of RUS just listed, one might wonder why this technique did
not supplant the more conventional techniques for modulus measurements long ago. A
major reason is that the vibrational eigenmodes of a three-dimensional object are rather
complicated. Examples of calculated eigenmodes are shown in figure 4. A RUS spectrum
contains much information, but extracting all that information is not a simple task. The
procedure is to compare the measured frequencies with computed frequencies which are
calculated with an initial set of input parameters. The input parameters for the computation
are varied in an iterative process to obtain good agreement between measured and computed
frequencies, and in this way the input parameters are determined. Usually the input
parameters are the elastic constants, although parameters describing crystalline orientation
or sample shape can be used. Thus, an essential ingredient of RUS is the ability to calculate
the eigenfrequencies in an efficient manner and systematically iterate toward a match of the
measured and computed frequencies. The computational methods have been developed by
Holland [20], Demarest [21], Ohnoet al [22, 23], Visscheret al [24], and Migliori et al [4]
and will be outlined in the next section. As will be shown below, the calculations involve
finding the eigenvalues and eigenvectors of a large matrix. To find the elastic constants, the
calculation has to be repeated many times in an iterative process. For good accuracy the
size of the matrix is typically 858× 858, although exploitation of symmetry can reduce the
problem dramatically. Until relatively recently such computations required large computers,
but it is now feasible to perform these calculations on PC type computers. The continued
increase in computing speed means that the computational aspect of the problem is no longer
a limitation.

4. Theoretical basis of RUS

4.1. Computation of the eigenfrequencies

An integral element of RUS is comparison of measured and computed frequencies. The
direct approach would be to solve (4); however, an exact solution for a 3D object
remains unsolved, except for some highly special cases. An approximate solution is
needed. Equation (4) is not the most convenient starting point for such an approximation.
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Fortunately, it turns out [24] that the displacementsui(xk) which are a solution of (4) with
free boundaries are exactly those for which the elastic Lagrangian is an extremum. This
fact leads to the following general scheme. The displacements are expanded in some
suitable set of basis functions. The derivatives of the Lagrangian with respect to the
expansion coefficients are equated to zero to determine the extremum. This leads to a
generalized eigenvalue problem in which kinetic and potential energies are represented by
rather large matrices. The eigenvalues give the square of the resonant frequencies and the
eigenvectors conveniently give the displacements. Thus, the numerical part of RUS consists
of calculating a large matrix, finding the eigenvalues, and then using the eigenvectors to
calculate ‘corrections’ to the set of input parameters so as to iterate toward a match between
computed and measured frequencies. The remainder of this section is broken up into
three parts: the calculation of the eigenvalues and eigenvectors; the inverse problem of
determining material parameters from the measured frequencies; and a brief discussion of
dissipation.

4.1.1. The general computational method.The derivation starts with the Lagrangian for a
3D elastic body,

L = 1

2

∫
V

(ρω2u2
i (r)− Ciji ′j ′ui,j (r)ui ′,j ′(r)) dV (5)

where an exp(iωt) time dependence has been assumed. The subscripts are to be summed
over, i, j, i ′, j ′ = 1, 2, 3, and subscripts separated by commas denote a differentiation with
respect to the subscripts appearing on the right-hand side of the comma. It is useful to
expand the displacements appearing in (5) in some basis such as

ui(r) = aiα8α(r) (6)

whereaiα are the expansion coefficients and8α(r) are the basis functions. The8α(r) are
often chosen based on the shape of the sample. In particular, it is important to be able
to integrate the basis functions and their derivatives over the volume of the sample. For
parallelepipeds, a convenient choice for8α(r) is the Legendre polynomials [21, 22], while
a series expansion in powers ofx, y, andz, i.e. xlymzn wherel, m, andn are integers, is
useful for a variety of shapes [24]. Each of the three components of the displacement is
expanded as in (6) and each has its own set of expansion coefficients. Substituting (6) into
the Lagrangian gives

L = 1

2

(
aiαai ′α′ρω

2
∫
V

δii ′8α(r)8α′(r) dV − aiαai ′α′
∫
V

Ciji ′j ′8α,j (r)8α′,j ′(r) dV

)
. (7)

This can be more compactly rewritten as

L = 1
2((ρω

2)aTEa− aTΓa) (8)

in which the integrals appearing in (7) are now the elements of the matricesE andΓ and
the expansion coefficients,aiα, are vectors. RequiringL to be an extremum is accomplished
by setting the derivatives ofL with respect to each of the expansion coefficients equal to
zero. The result is a generalized eigenvalue equation

Γa = (ρω2)Ea. (9)

The eigenvalues areλ = ρω2 and the eigenvectors,a, are the expansion coefficients. Thus,
calculating the resonant frequencies for a 3D elastic body is essentially one of calculating
Γ (and E if needed) and finding the eigenvalues of (9). It will be seen later that the
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eigenvectors are also useful in fitting the calculated resonant frequencies with the measured
values.

The elements ofE and Γ are calculated using two terms from the expansion ofu(r)
given in (6). For example, for a rectangular parallelepiped and normalized Legendre
polynomials(P̄n(x) =

√
(2n+ 1)/2Pn(x) wherePn are the usual Legendre polynomials)

as the basis functions, the expansion of the displacement becomes

u(r) = aiλµν√
L1L2L3

P̄λ(X)P̄µ(Y )P̄ν(Z)êi

X = x/L1 Y = y/L2 Z = z/L3. (10)

Here, i = 1, 2, 3 corresponds to thex, y, z components ofu(r), the ei are the usual
unit vectors, the sample dimensions in thex, y, and z directions are 2L1, 2L2, and 2L3

respectively, and we use the reduced coordinatesX, Y , andZ. Equatingp with a setiλµν
andq with a seti ′λ′µ′ν ′ allows one to calculate the matrices. The elements ofE andΓ are
thus given by

Epq = δii ′
∫ +1

−1

∫ +1

−1

∫ +1

−1
P̄λ(X)P̄λ′(X)P̄µ(Y )P̄µ′(Y )P̄ν(Z)P̄ν ′(Z) dX dY dZ (11)

and

Γpq =
3∑

j=1

3∑
j ′=1

Ciji ′j ′

LjLj ′

∫ +1

−1

∫ +1

−1

∫ +1

−1

∂(P̄λ(X)P̄µ(Y )P̄ν(Z))

∂Xj

×∂(P̄λ′(X)P̄µ′(Y )P̄ν ′(Z))
∂Xj ′

dX dY dZ. (12)

The nine terms in (12) are given by Ohno [22] asG1,G2, . . . , G9 for the case of
parallelepipeds. The reader is cautioned that an apparent typographical error exists in
Ohno’s paper for his equation (11) for the(i, i ′) = (3, 3) block of Γ.

In order that the rank ofE and Γ remain finite, the series for the expansion ofu(r)
must be truncated at some point. This is usually accomplished [24] by requiring

λ+ µ+ ν 6 R (13)

whereR is some integer. It can be shown [25] that this condition leads to

N = (R + 1)(R + 2)(R + 3)/6 (14)

combinations of(λ, µ, ν) in the expansion. The rank of the matrices will be 3N because
each component of the displacement will haveN terms in the expansion. It has been found
[24] that R = 10 is generally a good compromise between accuracy and computational
overhead. Even usingR = 10 leads to an 858× 858 matrix.

The form of the matrices depends on the order in which the expansion in (10) is written.
Writing the expansion in a different order in effect swaps rows and columns in the matrix.
As can be seen from (11), if the sample shape is a parallelepiped with the faces perpendicular
to the x, y, z directions and the displacement is expanded in Legendre polynomials,E is
simply the identity matrix. However, if the displacement is expanded in a power series of
xyz, E will be more complicated. Thus, there is an advantage in expanding the displacement
in terms of Legendre polynomials for parallelepipeds. Likewise, using a power series of
xyz for other sample shapes, such as spheres and cylinders, may be more convenient due
the ease in which the integrals may be performed.

To summarize, calculating the vibrational eigenfrequencies of a sample involves solving
(9) with a suitable choice of basis functions and an appropriate truncation of the expansion
of (10). The matrix elements are given by (11) and (12) for the case of a rectangular
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parallelepiped and normalized Legendre polynomials as the basis functions. There are
standard FORTRAN routines for solving such eigenvalue problems.

4.1.2. Use of symmetry to speed the calculations.It was realized by Holland [20] and
Demarest [21] that if the sample shape and elastic constant matrix had common symmetry
elements the matrices involved in calculating the resonant frequencies could be factored
into two, or more, smaller matrices. Ohno [22] has an excellent treatment of the use of
symmetry to split the matrices. This section will elaborate on his work. The ability to factor
the problem into a series of smaller problems is significant in that the time needed to solve
for the eigenvalues and eigenvectors of a matrix is commonly taken to be proportional to
the number of elements of the matrix. The need to solve multiple smaller matrices is more
than compensated by being able to work with smaller matrices. It has been found in practice
that, due to the large size of the original problem, the actual time saved is somewhat more
than expected.

Figure 5. An illustration of symmetric and antisymmetric displacement functions for mirror
plane symmetry.

To see the effects of symmetry we start by considering a parallelepiped with ayz

mirror plane. Following Ohno, it is convenient to group the displacement functions as to
whether they are symmetric or antisymmetric under a reflection in theyz plane. These
two types of displacement function are illustrated in figure 5. For a symmetric function,
a reflection in this plane changes the sign ofux , but does not change the signs ofuy and
uz. The antisymmetric function behaves oppositely on reflection: the sign ofux does not
change, but the signs ofuy and uz do. Since the Lagrangian represents the kinetic and
potential energies, it will be invariant under the symmetry operations of the crystal, and it is
obviously invariant under a sign change ofu(r). Thus, thex components of the symmetric
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modes,ux , have odd parity with respect tox, while they andz components,uy anduz, are
even inx. Likewise, it is seen for the antisymmetric modes thatux has even parity with
respect tox anduy anduz have odd parity. They and z coordinates do not change sign
under ayz mirror plane reflection; thus, the displacement functions need have no definite
parity with respect to these coordinates. It was stated in the preceding section that the
form of the matrices will be dependent upon the manner in which the expansion of the
displacement is written. If one naively writes the expansion for a parallelepiped with ayz

mirror plane, as given in (10), in numerical order of(λ, µ, ν), it will be found that a large
number of matrix elements will be identically equal to zero. Unfortunately the zeros will
be scattered haphazardly throughoutΓ resulting in a sparsely populated matrix. It is much
more convenient to write the expansion in terms of a symmetric part and an antisymmetric
part

u(r) = us(r)+ ua(r) (15)

where

us(r) = 1√
L1L2L3

( ∑
λµν
λ=odd

a1λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e1

+
∑
λµν

λ=even

a2λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e2+
∑
λµν

λ=even

a3λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e3

)

ua(r) = 1√
L1L2L3

( ∑
λµν

λ=even

a1λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e1

+
∑
λµν
λ=odd

a2λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e2+
∑
λµν
λ=odd

a3λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e3

)
.

(16)

It is obvious that the entire expansion is still present; only the ordering of the terms has
been changed. While this may seem like an unnecessary complication, it does have the very
great advantage of automatically factoringΓ into four large blocks. It will be shown below
that terms from the symmetric portion of the expansion only couple with other symmetric
terms. Likewise, antisymmetric terms only couple with other antisymmetric terms. The final
result is thatΓ is split into four blocks. The matrix elements corresponding to symmetric–
antisymmetric terms are zero. If the terms are written as in (15), the top left quarter ofΓ
will, in general, be filled with non-zero values corresponding to symmetric terms coupling
with other symmetric terms and the bottom right corner ofΓ will be filled with non-zero
terms corresponding to antisymmetric terms coupling with other antisymmetric terms. The
two remaining blocks, approximately one-half of the entire matrix, will be filled with zeros.

It is easy to take advantage of the mirror plane symmetry to reduce the computation
time. Rather than calculating one large matrix with non-zero blocks along the diagonal, two
smaller matrices can be calculated separately. Using the example above, the first matrix is
calculated using only combinations of(λ, µ, ν) from the symmetric part of the expansion
and its eigenvalues and eigenvectors determined. The process is then repeated using the
combinations of(λ, µ, ν) from the antisymmetric part of the expansion and a second set
of eigenvalues and eigenvectors obtained. The two sets of eigenvalues and eigenvectors
can then be combined and sorted in ascending order of eigenvalues. Thus, we can now
calculate individually the eigenvalues and eigenvectors of the two relatively small blocks
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corresponding to the two types of displacement. This results in the calculations being much
faster, and also provides a means of categorizing the mode types.

A single mirror plane was used to split the displacement into symmetric and
antisymmetric portions as given by (15) and (16). If additional symmetry operations are
included, the displacement can be factored again. For example, if the sample has a second
mirror plane parallel to thexz plane, each of the symmetric and antisymmetric parts of (16)
can be factored, resulting in four terms. In this example, anxz mirror plane will transform
they coordinate, resulting in a restriction onµ. The result can be written in a form similar
to (15), but with two superscripts.

u(r) = uss(r)+ usa(r)+ uas(r)+ uaa(r). (17)

Now the first superscript refers to the parity of the displacement with respect to the first
symmetry operation and the second superscript refers to the parity with respect to the second
symmetry operation. Using the second term in (17),uSA(r), as an example, we want terms
that are symmetric with respect to ayz mirror plane and antisymmetric with respect to a
xz mirror plane. Terms in the displacement satisfying these requirements are

usa(r) = 1√
L1L2L3

( ∑
λµν
λ=odd
µ=odd

a1λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e1

+
∑
λµν

λ=even
µ=even

a2λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e2+
∑
λµν

λ=even
µ=odd

a3λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e3

)
.

(18)

Again, all terms are still present in the expansion in (17); we have simply chosen to write
them in a particular order. It is now possible to factorΓ into 16 blocks with only the four
blocks along the diagonal having non-zero values, becauseuss terms only couple to other
uss terms, etc. Similar considerations show that three mirror planes perpendicular to thex,
y, andz axes lead toΓ being factored into 64 blocks with eight non-zero blocks along the
diagonal. If two mirror planes are used, four eigenvalue problems would be solved and the
results combined. Likewise three mirror planes lead to a total of eight individual problems
to solve. Despite the overhead of dealing with several problems, it will be demonstrated
below that the net computational savings are tremendous.

Mirror planes are convenient in that only a single coordinate changes sign under this
type of symmetry operation. Other types of symmetry can also be exploited, although the
restrictions they impose on the displacement may be more complicated. As discussed above,
the generic procedure is to write the expansion of the displacement in terms of symmetric
and antisymmetric modes and calculate individual eigenvalue problems for each mode.

As an example of another symmetry operation, we consider samples which possess a
twofold rotation axis aboutx. In this case, both they and z coordinates change sign,
resulting in simultaneous restrictions onµ and ν. Proceeding similarly to the arguments
above, a symmetric displacement function requires thatux should not change sign while
both uy anduz will change sign under the symmetry operation. These conditions are met
by requiringµ+ν be even forux and odd foruy anduz. The opposite conditions apply for
the antisymmetric modes. The grouping of the displacement functions for such a twofold
rotation about thex axis is

us(r) = 1√
L1L2L3

( ∑
λµν

µ+ν=even

a1λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e1
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+
∑
λµν

µ+ν=odd

a2λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e2+
∑
λµν

µ+ν=odd

a3λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e3

)

ua(r) = 1√
L1L2L3

( ∑
λµν

µ+ν=odd

a1λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e1

+
∑
λµν

µ+ν=even

a2λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e2+
∑
λµν

µ+ν=even

a3λµνP̄λ(X)P̄µ(Y )P̄ν(Z)e3

)
.

(19)

As was the case above, matrix elements involvingus andua will be zero, so that the matrices
may be broken into two non-zero blocks along the diagonal, and two smaller eigenvalue
problems result. Guided by (19) the first matrix is calculated using only combinations of
(λ, µ, ν) from the symmetric portion of the expansion and the eigenvalues and eigenvectors
determined. The process is then repeated using the combinations of(λ, µ, ν) from the
antisymmetric portion of the expansion and a second set of eigenvalues and eigenvectors
obtained. The two sets of eigenvalues and eigenvectors can then be combined and sorted
in ascending order of eigenvalues.

The displacement for a sample with inversion symmetry can be written as a sum of
symmetric terms and a sum of antisymmetric terms, with a restriction onλ+µ+ν = (odd or
even). Grouping the expansion in this manner will result in two non-zero blocks. Inversion
symmetry is important because any elastic constant matrix has this symmetry. Tables 1–3
list the restrictions placed on various combinations ofλ, µ, andν for the two types of mode
for various symmetry operations.

Table 1. Classification of the parity of the displacement function for a mirror plane parallel to
the yz, xz, or xy plane. The conditions on the integersλ, µ, andν are given.

Symmetric Antisymmetric

yz xz xy yz xz xy

λ µ ν λ µ ν

ux odd even even even odd odd
uy even odd even odd even odd
uz even even odd odd odd even

Table 2. Classification of the parity of the displacement functions for twofold rotations about
the x, y, or z axis. The conditions on the integersλ, µ, andν are given.

Symmetric Antisymmetric

x y z x y z

µ+ ν λ+ ν λ+ µ µ+ ν λ+ ν λ+ µ
ux even odd odd odd even even
uy odd even odd even odd even
uz odd odd even even even odd

The symmetry arguments have been discussed for the specific case of Legendre
polynomials as basis functions, but the essential feature is the parity of the basis functions.



Resonant ultrasound spectroscopy 6015

Table 3. Classification of the parity of the displacement functions for an inversion operation.
The conditions on the integersλ, µ, andν are given.

Symmetric Antisymmetric
λ+ µ+ ν λ+ µ+ ν

ux odd even
uy odd even
uz odd even

Table 4. Computation times, using zero, one, etc mirror planes, for one full iteration for a
rectangular parallelepiped with hexagonal crystallographic symmetry. The computations were
performed on a Hewlett–Packard 735 workstation.

No of mirror planes No of matrices Computation time (min:s)

0 1 11:10
1 2 4:27
2 4 1:53
3 8 0:35

Thus, the arguments are the same ifxλyµzν are chosen as the basis functions [24]. The
matrices factor in exactly the same way. The advantage of using symmetry is illustrated in
table 4. A workstation (Hewlett–Packard 735) was used to compute the eigenvalues for a
rectangular parallelepiped having hexagonal crystalline symmetry. Listed in table 4 are the
computation times for one iteration, i.e. one computation of the eigenvalues and a correction
to the input elastic constants (discussed below). The computations were carried out using
no mirror plane, one mirror plane, etc. Mirror planes were convenient for generating the
table; however, other types of symmetry result in similar performance.

The time quoted in table 4 is the time needed to solve the entire set of matrices. As
can be seen in the table, the use of symmetry greatly speeds the calculations. If a sample
has even a single mirror plane, the computation time is reduced by 60%. This becomes
even more important since 20–40 iterations may be needed, depending on the accuracy of
the initial estimates for the parameters. As can be seen in the table, a 20-fold decrease in
the computational time can be achieved if the sample has sufficiently high symmetry.

It was stated earlier that if both the sample shape and elastic constant matrix have
symmetry elements in common it is possible for the matrix to be factored. Now, we will
explore why the symmetric and antisymmetric modes are uncoupled. As an example we
consider explicitly a sample with a singleyz mirror plane in both the sample shape and
in the elastic constant matrix. The elements ofΓ are calculated as given in (12) and the
parities of the components of the displacement for ayz mirror plane are given in table 1.
Notice that each element ofΓ is the sum of nine individual terms, each of which is an
elastic constant multiplied by an integral. There are two separate reasons why terms from
the different mode types are uncoupled: the corresponding elastic constant matrix may be
zero; the integral may vanish.

First, consider the effect of a symmetry operation on an elastic constant. Federov [6]
shows that the effect of symmetry operations in which one coordinate transforms to another,
including possible sign changes, is to exchange values of 1, 2, 3 in the subscript for the
elastic constant with the transformed values. It is important to use the four-index form of the
elastic constant matrix when doing this. In addition, the new elastic constant is multiplied



6016 R G Leisure and F A Willis

by (−1)n wheren is the number of sign changes due to the transformation. For example,
consider the effect of ayz mirror plane onC1222. In this case, because the only effect of
the transformation is to replace ‘1’ with ‘−1’, we obtainC1222= −C1222. ThusC1222= 0
for any material which has ayz mirror plane. Keeping this in mind, we are now ready to
examine the reasons thatΓ can be factored into blocks. In the following, we consider an
element ofΓ using one term from the symmetric part of the expansion for the displacement
and one term from the antisymmetric part.

Case 1: i = i ′ = 1; usx , uax . From the preceding paragraph, we know that the effect
of a yz mirror plane on the elastic constant matrix is that all elastic constants in which
the number ‘1’ appears in the subscripts an odd number of times will be identically equal
to zero. Thus of the nine terms for a given element ofΓ with i = i ′ = 1, terms with
the combinations of(j, j ′) = {(1, 2), (1, 3), (2, 1), (3, 1)} will be identically equal to zero
because the elastic constant involved will be zero. So in this case, only five of the nine
terms remain to be examined. Next consider the term with(j, j ′) = (1, 1) and recall that
the parity ofusx is odd with respect tox and the parity ofuax is even. This term will be
zero because we will then be integrating the derivative of an odd function ofx, ∂usx/∂x,
multiplied by the derivative of an even function ofx, ∂uax/∂x, over a macroscopic sample
with a yz mirror plane. The remaining four terms all involve derivatives with respect to
y or z, not x, so in these cases the integral overx will be an integral of an odd function
of x multiplied by an even function ofx, so all four of these terms will be zero. It was
stated earlier that the sample and crystal structure must have symmetry elements in common
to obtain a decoupling of the matrix. We now see that certain terms vanish because the
corresponding elastic constant is zero. Other terms vanish because the integrand is an odd
function over the range of integration.

Case 2:i = 1, i ′ 6= 1; usx , ua(y or z). In this case, the only elastic constants that will not
vanish are those with(j, j ′) = (1, 2), (1, 3), (2, 1), (3, 1). All other elastic constants for
these elements of0 will be zero since all other combinations contain an odd number
of 1s. We only need to examine the remaining four cases. For the first two cases,
(j, j ′) = (1, 2), (1, 3), recallusx has odd parity with respect tox anduay anduaz also have
odd parity with respect tox. These two terms involve an integral overx of a derivative
with respect tox of an odd function ofx, multiplied by an odd function ofx, and will
vanish. Finally, the remaining two terms,(j, j ′) = (2, 1), (3, 1) will involve an integral
over x of an odd function ofx multiplied by the derivative with respect tox of an odd
function of x, again vanishing.

Case 3: i 6= 1, i ′ = 1; us(y or z), u
a
x . The argument proceeds the same as for case 2

except that even functions are involved.
Case 4: i 6= 1, i ′ 6= 1; us(y or z), u

a
(y or z). Once again, consideration of the non-zero

elastic constants leaves only the terms with(j, j ′) = (1, 1), (2, 2), (2, 3), (3, 2), (3, 3) to
be considered. Equation (16) shows thatus(y or z) has even parity with respect tox and
ua(y or z) has odd parity. The first set of(j, j ′) = (1, 1) to be examined will involve an
x integration of the derivative of an even function multiplied by the derivative of an odd
function, which vanishes. The remaining terms will all involve anx integration of an even
function multiplied by an odd function, which also vanishes.

In each case above, any term from the symmetric portion of the expansion for the
displacement combined with any term from the antisymmetric portion of the expansion will
vanish because either the corresponding elastic constant is zero, or the integral is zero.
An inversion operation imposes no restrictions on the elastic constants; all terms between
symmetric and antisymmetric modes vanish for a sample with inversion symmetry because
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the integrals are zero. Depending on the basis functions chosen, it may be necessary to
factor E as well asΓ. It is easy to show that the groupings discussed above also factorE.

4.2. Determination of the sample parameters

4.2.1. Minimization of the error function.The ability to calculate the resonant frequencies,
given the parameters for a particular sample, is but the first part of the calculations in RUS.
It is usually the case that one is interested in the inverse problem, the determination of
some of the parameters from the measured frequencies. Most often the elastic constants
are of interest but other parameters, such as the exact sample dimensions or perhaps the
orientation of the crystal with respect to the sample axes, may also be desired. An effective
method for determining the parameters for a given sample has been developed [4]. Given
a set of elastic constants and information about the sample, it is possible to calculate a
set of resonant frequencies as described earlier. This set of calculated frequencies is then
compared to the set of measured frequencies. A measure of the closeness of the fit can be
described in terms of some function, such as

χ =
∑
n

wn
(fn − gn)2

g2
n

(20)

wherewn is the weight to give the normalized difference between the calculated frequencies
fn and the measured frequenciesgn. It is assumed that the function given in (20) will have
a minimum when thecorrect set of parameters is achieved. If the current set of parameters
pα0 is sufficiently close to the correct set of parameterspα, an expansion of (20) to second
order will provide a close approximation to the functionχ .

χ(p) = χ(p0)+ (∂χ/∂pα)pα0(pα − pα0)

+1

2
(∂2χ/(∂pα∂pβ))pα0pβ0(pα − pα0)(pβ − pβ0)+ · · · . (21)

The repeated indices,α andβ, are to be summed over the number of parameters,M, which
are to be varied. Sinceχ will have a minimum whenp is the correct set of parameters, the
derivative of (21) with respect to each of the parameters,pα, will equal zero. Hence, we
arrive at a set ofM equations

(∂χ/∂pα)pα0 + (∂2χ/(∂pα∂pβ))pα0pβ0(pβ − pβ0) = 0. (22)

Solving forpα provides

pα = pα0− A−1
αβBβ (23)

where the derivatives appearing in (22) are the elements of the matricesA and B in (23).
Equation (23) then provides a means of calculating a new set of parameters, based on the
current parameters, which gives a better fit between the measured and calculated frequencies.
These new parameters are used in (9) and the problem is solved iteratively. It only remains
to calculate the first and second derivatives appearing in (22). This is easily done as follows,
and also provides a measure of the dependence of each mode on each parameter.

4.2.2. Calculation of the derivatives of the error function.The derivatives needed for (22)
and (23) are easily obtained from (9) and (20). Differentiating (20) gives

∂χ

∂pα
= 2

∑
n

wn
(fn − gn)

g2
n

∂fn

∂pα
(24)
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and

∂2χ

∂pα∂pβ
= 2

∑
n

wn

g2
n

∂fn

∂pα

∂fn

∂pβ
+ 2

∑
n

wn
(fn − gn)

g2
n

∂2fn

∂pα∂pβ
. (25)

The second term on the right-hand side of (25) may be dropped without affecting the final
results [4, 26]; thus, we need only the first derivatives offn with respect to each of the
parameters in order to solve forpβ in (23). These derivatives are derived from (9) as
shown below.

The parameterspα are usually the elastic constants, but it is frequently convenient to
allow the sample dimensions to vary somewhat as well. In this case one needs derivatives of
fn with respect to the sample dimensions as well as the elastic constants. Since bothΓ and
the density,ρ, appearing in (9) are functions of the sample dimensions, the computation of
the derivatives is simplified by introducing a new matrixΓ∗ = (volume)Γ. The eigenvalue
equation then becomes

Γ∗a = mω2Ea (26)

wherem, the sample mass, is constant. Realizing that the resonant frequenciesω, the
matricesΓ∗ and E, and the eigenvectorsa are all functions of the sample parameters
allows the derivative of (26) to be written

∂Γ∗

∂pα
a+ Γ∗

∂a

∂pα
= m∂ω

2

∂pα
Ea+mω2 ∂E

∂pα
a+mω2E

∂a

∂pα
. (27)

Now multiplying from the left byaT and taking the transpose of the entire equation,
remembering thatΓ∗ andE are both real, symmetric matrices gives

aT
∂Γ∗

∂pα
a+ ∂a

T

∂pα
Γ∗a = m∂ω

2

∂pα
aTEa+mω2aT

∂E
∂pα

a+mω2∂a
T

∂pα
Ea. (28)

The second and fifth terms are nothing more than (26) multiplied from the left by∂aT /∂pα,
which cancel. The needed derivatives are

∂fn

∂pα
= 1

(8π2fn)

∂ω2
n

∂pα
= 1

8π2fn(maTnEan)
aTn

(
∂Γ∗

∂pα
−mω2

n

∂E
∂pα

)
an. (29)

Once again, the problem is reduced considerably ifE is the identity matrix. In addition,
many FORTRAN libraries (Eispack, Lapack, etc) return the eigenvectors of a matrix already
normalized, which further simplifies the calculation.

Thus, determining the improved set of parameters for a given sample consists of solving
(23), using the derivatives from (29). This procedure works well if the initial set of
parameters is reasonably close to the correct ones. If this is not the case, the usual procedure
is simply to move opposite to the gradient. Thus, (23) is replaced by

pα = pα0− constant(Bα). (30)

Proper choices of the constant and elegant ways of combining (23) and (30) have been
discussed [4, 26].

One of the more troubling problems is in recognizing missing resonances in the list of
measured frequencies. It has been found helpful to begin by fitting only the first five to
ten resonances initially and varying the elastic constants manually. Missing resonances are
then often identified by a largechangein the percentage error at the missing mode. The
usual procedure is to insert a mode with zero frequency at that position in the list and use
the weightwn = 0 in (24) and (25) to ignore that term. It is often the case that a detailed
experimental search near the calculated frequency will then find the missing mode. It is also
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useful in many cases to remount the sample while searching for missing modes. Figure 3
shows an example in which the mode at 788 kHz was not seen on the initial scan, but was
observed after remounting the sample. This effect is understood when it is realized that
only the motion of the corner of the parallelepipedperpendicularto the transducer surface
generates a signal. If a mode accidentally has corner motionparallel to the transducer
surface, it will not be observed. Remounting of the sample will usually be at a somewhat
different angle and result in a component of the motion perpendicular to the transducer
surface.

4.3. Effects of dissipation

The use of RUS to measure ultrasonic attenuation is less well advanced than the use
of the technique for modulus measurements. This is unfortunate because conventional
attenuation measurements have been shown to be sensitive to a wide range of interactions.
The highQ values of many resonance lines will enhance sensitivity. HighQ values in
conventional ultrasonic standing wave measurements have provided enough sensitivity to
detect ultrasonically excited electron spin resonance [27] and nuclear magnetic resonance
[28], which are extremely small effects. Motion with a rate comparable to the ultrasonic
frequency leads to relaxational attenuation. Thus, RUS should be a sensitive tool for the
study of motion in the megahertz and lower range. This time scale is difficult to investigate
with techniques such as neutron scattering.

Most resonant frequencies in RUS depend on a combination of elastic constants. This
dependence complicates the interpretation of the results. The effect of the attenuation may
be expressed in terms of a complex elastic constant and a complex frequency. In many cases
the complex part is much smaller than the real part. In such cases the loss associated with
a particular resonance line can be expressed in terms of the loss attributed to each elastic
constant [29, 30]. An oscillator with damping can be represented by a complex frequency
f̃ = f0 + if ∗. It is easy to show that theQ characterizing the resonant response of the
oscillator to an external force is related tõf by

1/Q = 2f ∗/f0 (31)

if f ∗/f0� 1. Here, as usual,Q = f0/1f where1f is measured between the half-power
points of the resonance. The elastic Lagrangian may be separated into spatial and temporal
parts [21], where the temporal part may be represented by exp(i2πf t). Replacingf by f̃
in this expression relates the attenuation tof ∗. Theamplitudeattenuation coefficient often
measured in pulse-echo experiments,α, is related toQ by α = πfQ−1 if α is measured
in units of inverse time.Q−1 is usually called the internal friction. DenotingQ−1

k as the
internal friction associated with eigenmodek andQ−1

mn as the internal friction associated
with the elastic constantCmn, it has been shown [29] that

1

Qk

= 2

fk

∑
mn

∂fk

∂Cmn

Cmn

Qmn

= 2
∑
mn

∂(logfk)

∂(logCmn)

1

Qmn

. (32)

This formula is derived under the assumption that the internal friction is independent of
frequency, which may not always be true, but may be a reasonable approximation if the
frequency range is not too wide. As discussed above, the derivatives are usually calculated as
part of the inverse problem to find the elastic constants. Thus, by measuring a relatively large
number of theQ−1

k it is in principle possible to find the small number of independentQ−1
mn

by a least-squares method. The technique has been applied to measure the internal friction
in MgO [29, 30]. This method is potentially very powerful. The complete determination
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of all the Q−1
mn would be extremely valuable. However, it seems that the determination

of theQ−1
mn is not yet very accurate, perhaps because of mode-dependent extrinsic losses.

The measuredQ−1
k reflect all the energy dissipation from the resonance, either intrinsic or

extrinsic while theQ−1
mn refer only to intrinsic losses.

5. Applications of RUS

5.1. Phase transitions

RUS is especially useful for the study of phase transitions. The ability to use much
smaller samples means that inhomogeneities are less of a problem. The absence of a
bond between the sample and transducer offers the possibility of making measurements on
systems undergoing considerable thermal contraction at the transition. The description of
phase transitions often starts from an expression for the free energy of the system [31–33]

F = F0(T )+ FL(ηi)+ Fe(ej )+ Fc(ηi, ej ) (33)

whereηi represents one or more order parameters which describe the transition andej are
the elastic strains.Fe(ej ) is just the elastic energy

Fe = 1

2

∑
i,j

Cij eiej . (34)

(We replace the four-index tensor notation for the elastic constants by the two-index matrix
notation [5], with a similar change for the strains.)FL, the Landau free energy, is usually
represented by a polynomial in powers ofηi . Fc represents a coupling between the strain
and the order parameter. It is this coupling which leads to effects on the elastic constants
near the phase transition.F0 represents other contributions to the free energy which do
not involveη or e. The equilibrium states of the system are found by minimizingF with
respect to theηi andej . The elastic constants are the second derivatives ofF with respect
to strain,

Cij = ∂2F/(∂ei∂ej ). (35)

The purely elastic contribution to the elastic constants corresponds to calculatingCij with
ηi = 0. The effects of the phase transition are found by assuming that theηi respond to the
ultrasonic strains such that∂F/∂ηi = 0 at all times. The result for the elastic constants is
[34, 35, 25]

Cmn = C0
mn +

∂2Fc

∂em∂en
−
∑
k,l

[
∂2F

∂em∂ηk

] [
∂2F

∂ηk∂ηl

]−1 [
∂2Fc

∂en∂ηl

]
(36)

whereC0
mn are the elastic constants excluding the effects of the phase transition, while

the remaining terms are due to the phase transition. A great restriction on the possible
forms ofCmn is possible by requiring thatF be invariant under the symmetry operations of
the crystal.Fe will automatically satisfy this requirement by using the appropriate elastic
constant matrix for the crystal.FL can easily be constructed to satisfy this requirement
[32]. Various forms ofFc can satisfy the symmetry requirements; however, the different
forms predict different experimental results. A comparison of experimental and theoretical
results gives information aboutFc and thus sheds light on the nature of the phase transition.
Such an approach has been used [36] on superconducting La1.86Sr0.14O4. The study of
the strong temperature dependence of the tetragonal elastic constants above the tetragonal
to orthorhombic structural phase transition in La2−xSrxO4 has raised important questions
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about the nature of this second-order transition. RUS can be useful for a quick qualitative
measurement of elastic properties to see whether further work is warranted. In one case
[37] strong temperature-dependent softening of a resonant frequency in an unoriented chip
of La1.82Sr0.18O4 indicated that the softening observed on oriented crystals at lower values
of x was universal. The volume of the chip was only about 0.06 mm3.

We now consider in some detail a first-order phase transition in LiKSO4. This material
is one of a large number of sulphate compounds of the form ABSO4 (A, B = Li, Na, K,
Cs, Rb, Ag, H, and NH4). These materials exhibit a rich variety of phase transitions due
largely to the motion of the SO4 tetrahedra. At high temperatures the tetrahedra undergo
rapid rotation resulting in a relatively high-symmetry phase. As the temperature is lowered
the rapid rotation freezes out and various tilts of the tetrahedra give rise to a series of
phase transitions. The room-temperature structure of LiKSO4 is hexagonal (P63). At
approximately 210 K on cooling the material transforms to a trigonal phase (P31c). The
material returns to the hexagonal phase at approximately 240 K on warming. Remarkably,
the crystal shows no visible cracks or damage due to this first-order phase transition.
We made RUS measurements [38] on a single-crystal parallelepiped of room-temperature
dimensions 1.349×1.528×1.361 mm3. We identified 38 of the first 40 resonances at room
temperature and fitted the measured frequencies to a hexagonal elastic constant matrix with
a typical rms error of 0.16%. The measured frequencies shifted strongly on entering the
trigonal phase, and the results could no longer be fitted by the hexagonal elastic constant
matrix, consistent with the assignment of this phase to the trigonal class.

The most general trigonal case requires seven independent elastic constants. However,
a crystal such as LiKSO4 with a glide plane parallel to thec axis requires only six. If the
axis system is chosen such that the glide plane is perpendicular to thex axis the elastic
constant matrix is given by

C =


C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 0
0 0 0 0 C44 C14

0 0 0 0 C14 C66

 (37)

with C66 = 1
2(C11− C12). SettingC14 = 0 gives the hexagonal elastic constant matrix. In

general the elastic constant matrix may possess higher symmetry than the crystal because
operations such as inversions and pure translations have no effect onC. Thus, the trigonal
elastic constant matrix is invariant under a reflection in theyz plane, while the crystal only
has ayz glide plane. Not only is the trigonal elastic constant matrix invariant under a
reflection in theyz plane, but it also is invariant under a twofold rotation about thex axis.
These two symmetries were used to split the eigenvalue problem into four smaller problems
as discussed in subsubsection 4.1.2 [25].

The measured frequencies in the trigonal phase were fitted to the trigonal elastic constant
matrix to a typical rms accuracy of 0.35%. The reason for the decreased accuracy in
the trigonal phase could be some misalignment of the trigonal crystalline axes with the
parallelepiped axes. Any such misalignment is less important in the hexagonal phase because
the hexagonal system has the unusual property that it is elastically isotropic in the basal
plane. The temperature dependence of the elastic constants is shown in figure 6. The
symbols represent the data while the solid lines represent a fit to the data to be described
below. The most significant feature is the large change in the elastic constants at the
trigonal–hexagonal phase boundary, and the large hysteresis. The results forC14 merit
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special attention. An attempt was made to fit the data in the trigonal phase withC14 = 0,
i.e. with a hexagonal elastic constant matrix, but it was not possible to obtain a satisfactory
fit. Also, one attempt was made to fit the room-temperature data with a non-zero value of
C14. The initial values for the elastic constants in the calculation were the values obtained
with the hexagonal matrix along withC14 = 0.014× 1011 Pa. Within a few iterations the
program drove the value ofC14 down to 0.003×1011 Pa. The zero values ofC14 in figure 6
simply mean that the frequencies measured in the hexagonal phase were fitted with the
hexagonal phase elastic constant matrix.

Figure 6. The temperature dependence of elastic constants for LiKSO4. The arrows indicate
observed discontinuities in the measurements. Note the broken scale for theCij .

The phase transitions in LiKSO4 involve tilts of the SO4 tetrahedra. There are two
tetrahedra per unit cell and it turns out [38] that the hexagonal and trigonal phases
can be described by two order parameters,η1 and η2, which describe the configurations
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corresponding to the two crystalline symmetries. The hexagonal phase corresponds to
(η1, η2) = (±x, 0) while the trigonal phase corresponds to(η1, η2) = (0,±y). Imry [39]
has developed the Landau theory for a system with two coupled order parameters. We
follow his treatment and set

FL(η1, η2) = a1η
2
1 + 1

2b1η
4
1 + a2η

2
2 + 1

2b2η
4
2 + λη2

1η
2
2 (38)

whereai and bi are the usual Landau expansion coefficients andλ describes the strength
of coupling betweenη1 and η2. Imry shows that this expression describes a first-order
transition if λ > (b1b2)

1/2, which we take to be the case here. We use the RUS results
to determine the nature ofFc(η1, η2, ei). As mentioned above, the free energy must be
invariant under the symmetry operations of the crystal. The order parameters which we
have defined are scalars, thusFL(η1, η2) is automatically invariant. Changing the sign of
either of theη parameters does not change the symmetry of the crystal, thus the free energy
must be invariant under such sign changes. We first try the simplest form ofFc(η1, η2, ei)

compatible with these considerations, coupling quadratic in the order parameters and linear
in the strains. We require the form to be invariant under the operations ofP31c, which
gives

F1c(η1, η2, ei) = (k11η
2
1 + k21η

2
2)(e1+ e2)+ (k13η

2
1 + k23η

2
2)e3 (39)

where thek are coupling coefficients. This form is also invariant under the operations
of P63. Using (36) and (39), the predicted changes in the elastic constants at the phase
transitions are

1C12 6= 0 1C13 6= 0 1C33 6= 0
1C14 = 1C44 = 1C66 = 0. (40)

Clearly these predictions are in strong disagreement with the results of figure 6.
Next, we try bi-quadratic coupling in the order parameters and strain. We take

F2c = 1

2
η2

1

∑
i,j

k1ij eiej + 1

2
η2

2

∑
i,j

k2ij eiej (41)

wherek1ij and k2ij are the bi-quadratic coupling coefficients. BecauseF2c is of the same
form as the elastic energy, it will be invariant under the symmetry operations of the crystal
if the matricesk1ij and k2ij have the same form as the elastic constant matrices in each
phase. The elastic constants are easily calculated to be

Chexmn = Cmn + k1mnη
2
1 Ctrigmn = Cmn + k2mnη

2
2 (42)

where theη parameters appearing in (42) are the equilibrium values of the order parameters
in each phase. Considering the form of thek coefficients just mentioned, it is seen that
bi-quadratic coupling between the order parameters and strain permits changes in all the
elastic constants at the transition, in agreement with the experimental results. The results
give information about the relative magnitudes and signs of thek coefficients which could
be used to place constraints on any microscopic theory. The temperature dependence of
the elastic constants is related to the temperature dependence of the equilibrium values of
η1 andη2. Using the usual Landau approach to calculate theη parameters gives the solid
lines of figure 6. The Imry approach does allow for hysteresis, but we do not have enough
information to calculate the transition temperatures. The arrows in figure 6 simply indicate
the observed transitions.
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5.2. Hydrogen–metal systems

RUS has been used to study metals containing large amounts of hydrogen. Many of the
transition and rare-earth metals readily absorb hydrogen, which occupies interstitial sites in
the host lattice. The hydrogen mobility can be rather high even at liquid helium temperatures.
There are effects on the elastic constants and on the internal friction (dissipation). The
absorption of hydrogen is almost always associated with an expansion of the lattice. Thus,
one may reasonably expect an effect on the elastic constants and this is indeed found to be
the case [40]. In addition, accurate RUS measurements [41] on the Laves-phase pseudo-
binary compounds Zr(Al xFe1−x)2 demonstrated a correlation of the hydrogen capacity with
the bulk and shear modulus for 0.046 x 6 1.

Figure 7. Q−1 against temperature for a single-crystal YD0.10 parallelepiped. The mode at
0.81 MHz depends almost entirely onC44 while the mode at 0.83 MHz depends almost entirely
on C66.

The dynamical aspects of hydrogen in metals are reflected in the dissipation [42–44].
An example is shown in figure 7 for measurements on a parallelepiped of yttrium containing
deuterium. There is a prominent loss peak at approximately 90 K. It was determined by
a comparison of computed and measured frequencies that the peak at 0.81 MHz depends
almost entirely on the elastic constantC44 while the one at 0.83 MHz depends almost
entirely onC66. Thus, the results demonstrate a strong mode dependence for the loss. The
diffusive motion of hydrogen in metals is generally understood to be due to the hopping
or tunnelling of hydrogen between interstitial sites. Considering a simple model where the
hydrogen can occupy two different sites differing in energy by 2E and can move between
those sites with a relaxation timeτ , the internal friction 1/Qij corresponding to the elastic
constantCij is given by a relaxation-type expression [45–46]

1/Qij = (n0/Cij kBT )[∂E/∂ei ][∂E/∂ej ]sech2[E/kBT ]ωτ/(1+ ω2τ 2) (43)

wheren0 is the concentration of hydrogen participating in the relaxation,kB is Boltzmann’s
constant, andω is the angular frequency of the ultrasonic vibration. It can be seen
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immediately from figure 7 that(∂E/∂e4)
2 ' 4(∂E/∂e6)

2. Such a strong mode dependence
gives insight into the sites involved in the hydrogen motion.

The relaxation time is usually strongly dependent on temperature. In the case of a single
relaxation timeτ andE � kBT , (43) gives a simple attenuation peak with the maximum
occurring whenωτ ' 1. It is tempting to interpret the peaks of figure 7 in this way.
However, the case of hydrogen in metals, especially at low temperatures, is not so simple
and the data of figure 7 cannot be fitted so simply [42]. The situation with hydrogen in
scandium [43] differs even farther from the simple, classical expression. There appear to
be distributions ofτ andE. Further, it seems clear that tunnelling is involved and the
interaction of the tunnelling system with conduction electrons and thermal phonons changes
the picture in a fundamental way [47]. The picture is not yet clear, and research in this area
continues.

5.3. Other uses

Some of the unique capabilities of RUS were demonstrated in a remarkable experiment on
quasicrystalline AlCuLi [48]. As is often the case with the most interesting materials, only
small samples were available. Measurements were made on a high-quality quasicrystalline
parallelepiped of dimensions 0.6× 0.4× 0.4 mm3 to test the prediction that these materials
should be elastically isotropic [49]. A measure of elastic anisotropyε is given by

ε = 1− 2C44/(C11− C12). (44)

For elastically isotropic materialsC44 = 1
2(C11− C12) so ε = 0. Spooret al [48] found

ε = 0.0002± 0.0007 for their quasicrystalline sample. This value is considerably smaller
than that for tungsten (ε = 0.007± 0.002), which has the smallest anisotropy parameter
of any crystalline material. Even had large samples been available, it would have been
extremely difficult to set such a low limit onε using conventional techniques because three
independent sound velocity measurements would have been required, and it is doubtful that
the relative precision of the elastic constant measurements could have been maintained in
this case.

In addition to the use of RUS to study structural phase transitions in high-temperature
superconductors mentioned above, the technique has been used to determine the complete
elastic constant matrix for several other superconductors [1, 2, 36, 50]. The technique is
especially useful because large single crystals, needed for more conventional techniques,
are frequently not available. In addition, the symmetry is usually tetragonal (six elastic
constants) or orthorhombic (nine elastic constants) so the complete determination of the
elastic constant matrix by conventional means would be extremely difficult. RUS has also
been used to measure the elastic constants of several intermetallic compounds [51–54].
These measurements are useful for a variety of reasons. Some engineering applications
use single crystals, thus it is important to know the single-crystal elastic constants in
order to determine properties such as the angular dependence of Young’s modulus and
the shear modulus. Elastic constant measurements are also important for comparison with
first-principles calculations. In another remarkable case both the elastic constants and the
crystalline orientation were determined from RUS measurements on single-crystal tantalum
[55].

5.4. Outlook

There is an interest in using RUS for measurements under rather extreme conditions of
pressure and temperature [56–58]. High temperatures and pressures are of interest for
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Figure 8. A photograph of a RUS sample–transducer assembly mounted in a3He cryostat. The
sample, an ScD0.19 parallelepiped, has room-temperature dimensions 1.498×1.786×1.999 mm3

with the largest dimension parallel to the hexagonalc axis.

geophysical studies—indeed, the early work in the development of RUS came from this
area. A problem for the pressure-dependent studies is that the loading of the sample by
the pressurizing gas strongly degrades theQ values of the resonance lines and shifts
the frequencies at even moderate pressures [59]. This problem is not well understood.
There is also an interest in using RUS at very low temperatures to investigate effects
such as quantum-mechanical tunnelling of interstitials. We have made preliminary low-
temperature measurements in a cryostat specially designed for RUS measurement. Figure 8
is a photograph of a sample mounted in a RUS probe [60] in a3He refrigerator. The sample,
an ScD0.19 parallelepiped, has room-temperature dimensions 1.498× 1.786× 1.999 mm3

with the largest dimension parallel to the hexagonalc axis. Figure 9 shows the resonant
response of the ScD0.19 parallelepiped at 296 mK. In another expansion of the use of RUS,
magnetic systems are now being studied by the group of Albert Migliori at Los Alamos
National Laboratory. In this case, some of the symmetries of the elastic constant matrix are
lost due to the body torques exerted on the magnetic material.

RUS shows promise for the study of texture in polycrystalline materials. Processing
often leads to a preferred orientation of the grains which results in a weak elastic anisotropy
[61]. RUS is especially sensitive to this anisotropy because all elastic constants can be
measured simultaneously. RUS has obvious potential for nondestructive testing because the
eigenfrequencies depend on the shape of the material, and in fact on any variation of the
density or elastic constants. By calculating the eigenmodes for specific shapes it is possible
to understand which modes will be most sensitive to specific types of defect [62]. Finally,
while the discussion and examples of this review have focused on solids, it is clear that the
same principles apply to liquids.
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Figure 9. The resonant response of the ScD0.19 parallelepiped of figure 8 at 296 mK.

6. Conclusions

Means have been developed to accurately measure the mechanical vibrational spectrum
of physical objects, even quite small ones. It is also possible to efficiently calculate the
vibrational eigenfrequencies of such objects if the shape, density, elastic constant matrix, and
crystallographic orientation are known. With care, it is possible to solve the inverse problem,
i.e. determine the material parameters from the measured frequencies. These capabilities
underlie resonant ultrasound spectroscopy. RUS has been used to determine the complete
elastic constant matrix for small (∼1 mm3) single crystals, even for materials with as many
as nine independent elastic constants. This technique offers the promise of characterizing
the elastic properties of new materials almost as routinely as one now characterizes the
structure. It is also possible to obtain information about the dissipation associated with
various symmetry strains. The full exploitation of this last possibility will result in an
important new technique for the investigation of condensed matter. The sensitivity of the
ultrasonic spectrum to such parameters as the shape of the sample points to many practical
applications, several of which have already been realized.
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